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We derive an estimate of the statistical error in calculating the trace of a large matrix by using random
vectors, and show that therandom phase vectorgives the results with the smallest statistical error for a given
basis set. This result supports use of random phase vectors in the calculation of density of states and linear
response functions of large quantum systems.

DOI: 10.1103/PhysRevE.69.057701 PACS number(s): 02.60.Dc, 05.10.2a, 05.30.2d

In the fast algorithm calledorder-N methodsfor calculat-
ing the density of states(DOS) and linear response functions
[1–17], the Monte Carlo calculation of the trace of large
matrices by using therandom vectoroften plays an impor-
tant role. The central limit theorem guarantees the conver-
gence of the result as the sample numberK increases. Further
experience shows another useful feature called theself-
averaging effect: the fluctuation in some physical quantities
such as the energy density and linear response functions de-
creases as the dimensionN of the Hilbert space increases
[9–11,13–17]. These two types of convergence make the ran-
dom vector a very efficient numerical tool.

A special class of random vectors called therandom
phase vector[7–9] have been used in later papers[11–16]
without examining its efficiency rigorously. In this article,
we prove by following the scheme of Ref.[10] that the ran-
dom phase vector is really the most efficient random vector
in a wide class of random vectors. Then we illustrate the
mechanism of the self-averaging with a simple model Hamil-
tonian.

A (complex)random vector is defined by

uFl ; o
n=1

N

unljn, s1d

wherehunlj is the basis set used in the computation andjn are
a set of complex random variables with the identical prob-
ability distribution satisfying the statistical relations

kkjnll = 0, s2d

kkjn1
jn2

ll = 0, s3d

kkjn1

p jn2
ll = dn1n2

, s4d

where kk·ll stands for the statistical average. This class of
random vectors defined in one orthonormal basis set have the
coefficientszl in another orthonormal basis setull (for ex-
ample, the energy eigenstatesuEll of the HamiltonianH),

uFl = o
l=1

N

ullzl s5d

that satisfy the same statistical relations as Eqs.(2)–(4):
Since the coefficients in the two basis sets are related by the
unitary transformation

zl = o
n=1

N

kl unljn, s6d

zl
p = o

n=1

N

jn
pknull, s7d

the statistical relations ofzn are derived as

kkzlll = o
n=1

N

kl unlkkjnll = 0, s8d
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kn1ul1lkl2un2lkkjn1

p jn2
ll=o
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kl2unlknul1l

= kl2ul1l = dl1l2
. s10d

In view of the energy eigenstates, the random vector contains
all eigenstates with equal probability and represents the sys-
tem at a very high temperature. Theorthonormalityandcom-
pletenessof random vectors

kkkFuFlll = N, s11d

kkuFlkFull = I , s12d

where I is the identity operator, are shown by using Eqs.
(2)–(4).

The most important feature of random vectors is that the
statistical average ofkFuXuFl gives the trace ofX as follows:*Electronic address: tiitaka@riken.jp; URL:http://www.iitaka.org/
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kkkFuXuFlll=o
n

Xnn + o
n1,n2

kkjn1

p jn2
− dn1n2

llXn1,n2
=o

n

Xnn

= trfXg. s13d

For numerical evaluation of Eq.(13) with K samples of ran-
dom vectors, the second term of(13) gives the statistical
fluctuation,

dX =
1

K
o
k

o
n1,n2

sjn1

pskdjn2

skd − dn1n2
dXn1n2

. s14d

In the special case of the Hermitian matrixXn1n2
=Xn2n1

p , it is
shown thatdX becomes a real number by adding the expres-
sion (14) with the subscriptsn1 andn2 exchanged. The order
of the fluctuation for a general matrixX is estimated as

udXu2 =
1
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By taking the statistical average of Eq.(15) and carefully

evaluatingkkjn1

pskdjn2

skdjn3

sk8djn4

psk8dll by using Eqs.(2)–(4), we ob-
tain

udXu2 =
1

KHskkujnu4ll − 1do
n

uXnnu2 + o
n1Þn2

uXn1n2
u2J ,

s16d

where the factorskkujnu4ll−1d is factored out because we
assumed the identical probability distribution for alljn. The
factor 1/K ensures the behaviorudXu,1/ÎK expected from
the central limit theorem. According to the inequality

kkujnu4ll ù skkujnu2lld2 = 1, s17d

the fluctuation becomes the smallest for a given basis set if
and only if ujnu=1 for eachn and for each sample of random
variables. One of such random vectors is called therandom
phase vector[7–9] and defined by

uFrandom phasel ; o
n=1

N

unleiun, s18d

whereun are a set of independent uniform random variables
defined inf−p ,pg. Obviously, the random variablesjn=eiun

satisfy the statistical relations(2)–(4). Further, each sample

of random phase vectors is automatically normalized without
statistical fluctuation,

kFrandom phaseuFrandom phasel=o
n8,n

eisun−un8dkn8unl = o
n=1

N

1 = N.

s19d

This result is consistent with the observation in Ref.[10] that
normalized random vectors give less statistical errors than
unnormalized random vectors. It is important to note that the
definition of the random phase vectorujnu =1 depends on the
choice of the basis set. For example, let us examine a unitary
transformation of the coefficientsji =eiuisi =1,2d of a random
phase vector,

z1 =
1
Î2

j1 +
1
Î2

j2, s20d

z2 =
1
Î2

j1 −
1
Î2

j2. s21d

The transformed coefficientszn, of course, satisfy the rela-
tion (2)–(4), but uznu=1±cossu1−u2dÞ1. Therefore the ran-
dom phase vector in the original basis set is not a random
phase vector in the new basis set. For the random phase
vector in a given basis set, the fluctuation(16) reduces to a
simple form[8],

udXu2 =
1

K
o

n1Þn2

uXn1n2
u2, s22d

which becomes zero for diagonal matrices as expected. Note
that the fluctuation(22) depends on the choice of the basis
set and that it is very important for reducing the fluctuation
to choose a basis set that makes off-diagonal matrix elements
as small as possible. For a Hermitian matrixX, in theory, we
can choose a basis set that diagonalizesX and removes the
fluctuation completely.

As a complex random vector(1), a real random vector can
be defined by using real random variables with the identical
probability distribution satisfying the statistical relations

kkjnll = 0, s23d

kkjn1
jn2

ll = dn1n2
. s24d

Unlike a complex random vector, a real random vector in one
basis set is not necessarily mapped by the unitary formation
(6) to a real random vector in another basis set. However, if
we stick to the original basis set, Eqs.(11)–(15) are also
valid for real random vectors. Before evaluatingudXu2 for
real random vectors, let us assume for simplicity thatX is a
symmetricmatrix. This does not limit the generality of our
argument because any matrixX can be decomposed into the
sum of the symmetric and antisymmetric parts,

X = 1
2sX + Xtd + 1

2sX − Xtd = S+ A, s25d

whereXt represents the transpose ofX, and trfXg=trfSg since
trfAg=0. Therefore ifX is not symmetric then we may cal-
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culate the trace of the symmetric partS. By taking the sta-
tistical average of Eq.(15) and carefully evaluating

kkjn1

skdjn2

skdjn3

sk8djn4

sk8dll by using Eqs.(23) and (24), we obtain

udXu2 =
1

KHskkujnu4ll − 1do
n

uXnnu2 + 2 o
n1Þn2

uXn1n2
u2J .

s26d

As in the case of complex random vectors, the real random
vector with the minimum fluctuation is the random vector
with jn= ±1, (therandom sign vector). The random sign vec-
tor may be regarded as a random phase vector with the bi-
nary phaseun=0,p and satisfies the normalization(19) with-
out fluctuation. For the random sign vector in a given basis
set, the fluctuation(26) reduces to a simple form

udXu2 =
2

K
o

n1Þn2

uXn1n2
u2, s27d

which is twice as large as that of the random phase vector
(22). Therefore use of the random phase vector rather than
the random sign vector is recommended except in special
cases where the evaluation of matrix elements is substan-
tially accelerated by using real numbers instead of complex
numbers.

Let us illustrate the efficiency of various types of random
vectors in the case of the Hamiltonian operator for a particle
moving in the one-dimensional space under the influence of
the local potentialVsxd,

H =
px

2

2m
+ Vsxd. s28d

Discretizing the one-dimensional space of sizeL=NDx into
N meshes xi = iDxsi =1, . . . ,Nd by the finite difference
method gives the Hamiltonian matrix, which is tridiagonal,

Hij =
"

2msDxd2sdi,j+1 − 2di,j + di,j−1d + di,jVsxid. s29d

The fluctuationudHu2 for random phase vectors, complex
random Gaussian vectors, random sign vectors, and real
Gaussian vectors is respectively estimated as 2, 6, 4, and 12
in the unit of s" /2msDxd2d2N by using Eqs.(16) and (26),
and the fact thatkkujnu4ll=1,2,1, and 3,respectively. The
fluctuation of the random phase vector is six times less than
that of the real Gaussian random vector, which means that
the random phase vector requires six times less samplings for
a given accuracy.

In contrast to the random vector dependence of the fluc-
tuation, it is rather difficult to discuss the self-averaging ef-
fect in a general way because the effect depends on the
choice of the basis set and also on the physical nature of the
matrix X such as whether the quantity is intensive or exten-
sive. Therefore let us first examine the self-averaging effect
of the energy density in the above example. The fluctuation
for the random phase vector becomes

dH/L , S "

2msDxd3D Î2
ÎKN

, s30d

asN→`, indicating the self-averaging behavior, 1 /ÎN. It is
interesting that the local potentialVsxd does not contribute to
the fluctuation at all in the calculation with the real space
basis set. When the spectral density such as the DOS and
linear response function, the dimensionN of the matrix in the
above estimation should be replaced byNef f, the number of
resonances within the spectral resolutionDv, e.g., Nef f
=rsvdDv for the DOS. Therefore to reach the same accuracy
we need more random vectors for higher energy resolution or
lower temperature. See Ref.[10] for a more sophisticated
analysis. To understand the general tendency of the self-
averaging, let us assume that typical matrix elements ofX
have values ofOs1d. Then the fluctuationudXu2 in Eqs.(16)
and (26) becomesOsNd for sparse or banded matrices and
OsN2d for dense matrices. Since the average value, trfXg,
becomesOsNd, the relative fluctuationdX/ trfXg becomes
Os1/ÎNd for sparse or banded matrices andOs1d for dense
matrices. This means that the self-averaging is effective for
sparse or banded matrices but not for dense matrices.

In summary, we have proved that the random phase vector
is the most efficient choice among the random vectors with
the identical probability distribution satisfying Eqs.(2)–(4).
The fluctuation for the random phase vector is expressed as
the sum of the square norm of the off-diagonal elements. We
show also that thesmallnessand sparsenessof the off-
diagonal elements are crucial for the self-averaging effect.
Accordingly our recommended recipe for efficient calcula-
tion is to choose a basis set that makes the off-diagonal ele-
ments small and sparse(or banded) as much as possible, and
then use the random phase vector.
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