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Random phase vector for calculating the trace of a large matrix
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We derive an estimate of the statistical error in calculating the trace of a large matrix by using random
vectors, and show that thandom phase vectaives the results with the smallest statistical error for a given
basis set. This result supports use of random phase vectors in the calculation of density of states and linear
response functions of large quantum systems.
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In the fast algorithm calledrder-N methodgor calculat- N
ing the density of state®0S) and linear response functions D)y = Ih¢ (5)
[1-17, the Monte Carlo calculation of the trace of large I=1

matrices by using theandom vectoroften plays an impor-

tant role. The central limit theorem guarantees the convell—sh.at sa::sfy tr}? same Stﬁt'St'Calb re!atlons as E(?}(g)b h
gence of the result as the sample numiéncreases. Further >'NCe the coefficients in the two basis sets are related by the

experience shows another useful feature called ghl-  unitary transformation
averaging effectthe fluctuation in some physical quantities N
such as the energy density and linear response functions de- 4= Al (6)
creases as the dimensioh of the Hilbert space increases ! 1 v
[9-11,13-1T. These two types of convergence make the ran-
dom vector a very efficient numerical tool. N
A special class of random vectors called trendom r=3 £4nll) )
phase vectof7-9 have been used in later papgid—14 ' _n:1 n '
without examining its efficiency rigorously. In this article,
we prove by following the scheme of R¢fL0] that the ran-  the statistical relations of, are derived as
dom phase vector is really the most efficient random vector

in a wide class of random vectors. Then we illustrate the N
mechanism of the self-averaging with a simple model Hamil- U= {Iny{(&p) =0, (8)
tonian. n=1
A (complex)random vector is defined by
N N
N
= [N )<I5n =0, 9
) =S e, (1) «&,4,0 |1§=:l |22:1< 1IN Xl2lno)((én €n,)) 9
n=1
where{|n)} is the basis set used in the computation gnare A NN ‘ N
a set of complex random variables with the identical prob- (&4, = 2 2 (MllD{2In) (&, &)= 2 (llnXnll)
ability distribution satisfying the statistical relations 1171171 n=1
=l =8, (10
(&N =0, ) S

In view of the energy eigenstates, the random vector contains

(&, & =0, (3)  all eigenstates with equal probability and represents the sys-
tem at a very high temperature. Toghonormalityandcom-
pletenesof random vectors

(& £ D) = By (4)
. _ (((@|D))) =N, (11
where ((-)) stands for the statistical average. This class of
random vectors defined in one orthonormal basis set have the
(oXD)) =1, (12

coefficients¢; in another orthonormal basis sgt (for ex-

ample, the energy eigenstatés) of the HamiltonianH), where| is the identity operator, are shown by using Egs.

4. _
The most important feature of random vectors is that the
*Electronic address: titaka@riken.jp; URL:http://www.iitaka.org/ statistical average dfb|X|®) gives the trace oX as follows:
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(U@XIPIN=2 Xon+ 2 (& En, = nyn ) Xinyn,= 2 X

ny,Ny

=tr[X]. (13

For numerical evaluation of E¢13) with K samples of ran-
dom vectors, the second term @f3) gives the statistical
fluctuation,

1 )
OoX = R% nEﬂ (gr:ik) nkz) - 5n1n2)xnln2- (14
1,12
In the special case of the Hermitian mat)(xlnzzxﬁznl, it is
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of random phase vectors is automatically normalized without
statistical fluctuation,

N
(®random phasleq)random phasz: 2 ei(an_an)<n,|n> = 2 1=N.

n’n n=1
(19

This result is consistent with the observation in R&0] that
normalized random vectors give less statistical errors than
unnormalized random vectors. It is important to note that the
definition of the random phase vecidg| =1 depends on the
choice of the basis set. For example, let us examine a unitary

shown that5X becomes a real number by adding the exprestransformation of the coefficients=€%(i=1,2) of a random
sion (14) with the subscripts); andn, exchanged. The order phase vector,

of the fluctuation for a general matrix is estimated as

1 " r !
|0X2= 152 X (6,8 = G )Xo én

N3
k,k’ N1N2n3ng

-8, )X

N3Ny n3n,

S S £NOENX, X,

4 N3Ny
k,k" N1Non3ng

FIS S g,

K K nqnongny
1
+_E E (= 6n

K kK nqnongny

5n1n25n3n4xnlnzxn3n4
NiNoNgny

1
K2

)X

£
X
3N,/ N N7 Ngny

K K *
AL 0 S

(15

By taking the statistical average of E¢L5) and carefully
evaIuating((&ﬁ(lk)gﬂz) nk3 ).f,:ik )Y by using Eqgs(2)~(4), we ob-
tain

1
|oX|?= R{<<<|§n|4>> ~ D2 X+ 2 Iannz'Z}’

ny#ny

(16)

where the factor(({|&,/*)-1) is factored out because we

assumed the identical probability distribution for ll The
factor 1K ensures the behavioéX| ~ 1/\K expected from
the central limit theorem. According to the inequality

(&l = &Pn?=1, (17)

1 1

=— —=&,, 20
& \*”2§l+\“"2§2 (20

f= et (21

2 \,’E 1 \15 2"

The transformed coefficients,, of course, satisfy the rela-
tion (2)«(4), but |£,|=1+cog6, - 6,) # 1. Therefore the ran-
dom phase vector in the original basis set is not a random
phase vector in the new basis set. For the random phase
vector in a given basis set, the fluctuatidr®) reduces to a
simple form[8],

1
o=y S

X o |3,
<2 ool

(22
which becomes zero for diagonal matrices as expected. Note
that the fluctuation(22) depends on the choice of the basis
set and that it is very important for reducing the fluctuation
to choose a basis set that makes off-diagonal matrix elements
as small as possible. For a Hermitian maXixin theory, we
can choose a basis set that diagonaliXesnd removes the
fluctuation completely.

As a complex random vectet), a real random vector can
be defined by using real random variables with the identical
probability distribution satisfying the statistical relations

&N =0, (23

(i fn)) = Bupn,. (24)

Unlike a complex random vector, a real random vector in one
basis set is not necessarily mapped by the unitary formation

the fluctuation becomes the smallest for a given basis set (6) to a real random vector in another basis set. However, if
and only if|&,| =1 for eachn and for each sample of random We stick to the original basis set, Egd1)-(15) are also

variables. One of such random vectors is calledrdr@lom
phase vectof7-9] and defined by

N
‘q)random pha:szE E |n>ei‘9n’

n=1

(18)

where 6, are a set of independent uniform random variables

defined in[—r, 7r]. Obviously, the random variablgg=¢€'’

valid for real random vectors. Before evaluatihgx|? for
real random vectors, let us assume for simplicity tkas a
symmetricmatrix. This does not limit the generality of our
argument because any matdxcan be decomposed into the
sum of the symmetric and antisymmetric parts,

(25

whereX' represents the transposeXgfand tfX]=tr[S] since

X=3(X+X) +5(X-X) =S+A,

satisfy the statistical relation®)—4). Further, each sample tr[A]=0. Therefore ifX is not symmetric then we may cal-
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culate the trace of the symmetric p&tBy taking the sta- In contrast to the random vector dependence of the fluc-

tistical average of Eq.(15 and carefully evaluating tuation, it is rather difficult to discuss the self-averaging ef-

(ER 0 LD L by using Egs(23) and (24), we obtain fect in a general way because the effect depends on the
n Sng Sng S, 7 Y 9 Eas(23 @9 choice of the basis set and also on the physical nature of the

sive. Therefore let us first examine the self-averaging effect
of the energy density in the above example. The fluctuation
(26)  for the random phase vector becomes

1
BGE E{<<<|gn|4>> D X2 +2 X (X 2

matrix X such as whether the quantity is intensive or exten-
ny#ny .

As in the case of complex random vectors, the real random =

vector with the minimum fluctuation is the random vector SHIL ~ <L>\_i (30)
with &,= 1, (therandom sign vectdr The random sign vec- 2m(Ax)*/ VKN’

tor may be regarded as a random phase vector with the bi-

nary phas#),=0,7 and satisfies the normalizatioh9) with-  asN— c, indicating the self-averaging behavior,\N. It is
out fluctuation. For the random sign vector in a given basisnteresting that the local potentisl(x) does not contribute to

set, the fluctuatiori26) reduces to a simple form the fluctuation at all in the calculation with the real space
5 basis set. When the spectral density such as the DOS and
|6X]2=— > IXnn |2, (27) linear response function, the dimensigrof the matrix in the
Knzn, 2 above estimation should be replaced My, the number of

resonances within the spectral resolutidw, e.g., Ng¢s

which is twice as large as that of the random phase VeCtOLp(w)Awfor the DOS. Therefore to reach the same accuracy

(22). Therefore use of the random phase vector rather than : )
e need more random vectors for higher energy resolution or

the random sign vector 'S recomme_nded except in speci nger temperature. See R4fl0] for a more sophisticated

cases where the evaluation of matrix elements is SUbStar}{naI sis. To understand the general tendency of the self-
tially accelerated by using real numbers instead of complex ySIS. gene ency
numbers. averaging, let us assume that typical matrix elementX of

. s
Let us illustrate the efficiency of various types of randomha\éez\ga“ées OO(?O. Lhe}n the fluctuat|(k))|115)é| (;n ch’.'(le) d
vectors in the case of the Hamiltonian operator for a particlé”‘n (26) becomesO(N) for sparse or banded matrices an

5 . .
moving in the one-dimensional space under the influence O(P(N ) for dense matncgs. Since the average valueir
the local potential(x), becomesO(N), the relative fluctuationsX/tr[X] becomes

O(1/yN) for sparse or banded matrices a@dl) for dense
Y= pﬁ v 28 matrices. This means that the self-averaging is effective for
~om (x). (28) sparse or banded matrices but not for dense matrices.

. o ) ) ] . In summary, we have proved that the random phase vector
Discretizing the one-dimensional space of sizeNAx into s the most efficient choice among the random vectors with
N meshes x=iAx(i=1,... N) by the finite difference the identical probability distribution satisfying EqR)—4).
method gives the Hamiltonian matrix, which is tridiagonal, The fluctuation for the random phase vector is expressed as

% the sum of the square norm of the off-diagonal elements. We
i o(8 41— 28t 8 j-) + & V(x). (29)  show also that thesmallnessand sparsenesof the off-

2m(Ax) diagonal elements are crucial for the self-averaging effect.
The fluctuation|sH|? for random phase vectors, complex Accqrdingly our recom_mended recipe for efficier_wt calcula-
random Gaussian vectors, random sign vectors, and refPn is to choose a basis set that makes the off-diagonal ele-
Gaussian vectors is respectively estimated as 2, 6, 4, and 19ents small and sparger bandegias much as possible, and
in the unit of (:/2m(Ax)?)2N by using Eqs(16) and (26),  then use the random phase vector.
and the fact that(|&]%)=1,2,1, and 3respectively. The
fluctuation of the random phase vector is six times less than ACKNOWLEDGMENTS
that of the real Gaussian random vector, which means that
the random phase vector requires six times less samplings for One of the authorg¢T.l.) thanks S. Nomura, H. Tanaka,
a given accuracy. and M. Machida for useful discussions.
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